3.43 \(\int \cot ^2(x) (1+\cot (x))^{3/2} \, dx\)

Optimal. Leaf size=139 \[ -\frac{2}{5} (\cot (x)+1)^{5/2}+2 \sqrt{\cot (x)+1}-\sqrt{\sqrt{2}-1} \tan ^{-1}\left (\frac{\left (1-\sqrt{2}\right ) \cot (x)-2 \sqrt{2}+3}{\sqrt{2 \left (5 \sqrt{2}-7\right )} \sqrt{\cot (x)+1}}\right )-\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{\left (1+\sqrt{2}\right ) \cot (x)+2 \sqrt{2}+3}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{\cot (x)+1}}\right ) \]

[Out]

-(Sqrt[-1 + Sqrt[2]]*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Cot[x])/(Sqrt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + Cot[x]])
]) - Sqrt[1 + Sqrt[2]]*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqrt[2])*Cot[x])/(Sqrt[2*(7 + 5*Sqrt[2])]*Sqrt[1 + Cot[x]
])] + 2*Sqrt[1 + Cot[x]] - (2*(1 + Cot[x])^(5/2))/5

________________________________________________________________________________________

Rubi [A]  time = 0.234766, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {3543, 3482, 12, 3536, 3535, 203, 207} \[ -\frac{2}{5} (\cot (x)+1)^{5/2}+2 \sqrt{\cot (x)+1}-\sqrt{\sqrt{2}-1} \tan ^{-1}\left (\frac{\left (1-\sqrt{2}\right ) \cot (x)-2 \sqrt{2}+3}{\sqrt{2 \left (5 \sqrt{2}-7\right )} \sqrt{\cot (x)+1}}\right )-\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{\left (1+\sqrt{2}\right ) \cot (x)+2 \sqrt{2}+3}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{\cot (x)+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Cot[x]^2*(1 + Cot[x])^(3/2),x]

[Out]

-(Sqrt[-1 + Sqrt[2]]*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Cot[x])/(Sqrt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + Cot[x]])
]) - Sqrt[1 + Sqrt[2]]*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqrt[2])*Cot[x])/(Sqrt[2*(7 + 5*Sqrt[2])]*Sqrt[1 + Cot[x]
])] + 2*Sqrt[1 + Cot[x]] - (2*(1 + Cot[x])^(5/2))/5

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3482

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n - 1))/(d*(n - 1)
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3536

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> With[{q =
 Rt[a^2 + b^2, 2]}, Dist[1/(2*q), Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*
x]], x], x] - Dist[1/(2*q), Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]], x
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2
*a*c*d - b*(c^2 - d^2), 0] && (PerfectSquareQ[a^2 + b^2] || RationalQ[a, b, c, d])

Rule 3535

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*
d^2)/f, Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]
]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[2
*a*c*d - b*(c^2 - d^2), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx &=-\frac{2}{5} (1+\cot (x))^{5/2}-\int (1+\cot (x))^{3/2} \, dx\\ &=2 \sqrt{1+\cot (x)}-\frac{2}{5} (1+\cot (x))^{5/2}-\int \frac{2 \cot (x)}{\sqrt{1+\cot (x)}} \, dx\\ &=2 \sqrt{1+\cot (x)}-\frac{2}{5} (1+\cot (x))^{5/2}-2 \int \frac{\cot (x)}{\sqrt{1+\cot (x)}} \, dx\\ &=2 \sqrt{1+\cot (x)}-\frac{2}{5} (1+\cot (x))^{5/2}-\frac{\int \frac{-1-\left (-1-\sqrt{2}\right ) \cot (x)}{\sqrt{1+\cot (x)}} \, dx}{\sqrt{2}}+\frac{\int \frac{-1-\left (-1+\sqrt{2}\right ) \cot (x)}{\sqrt{1+\cot (x)}} \, dx}{\sqrt{2}}\\ &=2 \sqrt{1+\cot (x)}-\frac{2}{5} (1+\cot (x))^{5/2}-\left (-4+3 \sqrt{2}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \left (-1+\sqrt{2}\right )-4 \left (-1+\sqrt{2}\right )^2+x^2} \, dx,x,\frac{1-2 \left (-1+\sqrt{2}\right )-\left (-1+\sqrt{2}\right ) \cot (x)}{\sqrt{1+\cot (x)}}\right )+\left (4+3 \sqrt{2}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \left (-1-\sqrt{2}\right )-4 \left (-1-\sqrt{2}\right )^2+x^2} \, dx,x,\frac{1-2 \left (-1-\sqrt{2}\right )-\left (-1-\sqrt{2}\right ) \cot (x)}{\sqrt{1+\cot (x)}}\right )\\ &=-\sqrt{-1+\sqrt{2}} \tan ^{-1}\left (\frac{3-2 \sqrt{2}+\left (1-\sqrt{2}\right ) \cot (x)}{\sqrt{2 \left (-7+5 \sqrt{2}\right )} \sqrt{1+\cot (x)}}\right )-\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{3+2 \sqrt{2}+\left (1+\sqrt{2}\right ) \cot (x)}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{1+\cot (x)}}\right )+2 \sqrt{1+\cot (x)}-\frac{2}{5} (1+\cot (x))^{5/2}\\ \end{align*}

Mathematica [C]  time = 0.297677, size = 96, normalized size = 0.69 \[ \frac{\sin (x) \left (-\frac{2}{5} \sin (x) (\cot (x)+1)^{5/2} \left (2 \cot (x)+\csc ^2(x)-5\right )-2 \sin (x) (\cot (x)+1)^2 \left (\frac{\tanh ^{-1}\left (\frac{\sqrt{\cot (x)+1}}{\sqrt{1-i}}\right )}{\sqrt{1-i}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{\cot (x)+1}}{\sqrt{1+i}}\right )}{\sqrt{1+i}}\right )\right )}{(\sin (x)+\cos (x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[x]^2*(1 + Cot[x])^(3/2),x]

[Out]

(Sin[x]*(-2*(ArcTanh[Sqrt[1 + Cot[x]]/Sqrt[1 - I]]/Sqrt[1 - I] + ArcTanh[Sqrt[1 + Cot[x]]/Sqrt[1 + I]]/Sqrt[1
+ I])*(1 + Cot[x])^2*Sin[x] - (2*(1 + Cot[x])^(5/2)*(-5 + 2*Cot[x] + Csc[x]^2)*Sin[x])/5))/(Cos[x] + Sin[x])^2

________________________________________________________________________________________

Maple [B]  time = 0.035, size = 265, normalized size = 1.9 \begin{align*} -{\frac{2}{5} \left ( 1+\cot \left ( x \right ) \right ) ^{{\frac{5}{2}}}}+2\,\sqrt{1+\cot \left ( x \right ) }-{\frac{\sqrt{2+2\,\sqrt{2}}\sqrt{2}}{4}\ln \left ( 1+\cot \left ( x \right ) +\sqrt{2}+\sqrt{1+\cot \left ( x \right ) }\sqrt{2+2\,\sqrt{2}} \right ) }-{\frac{\sqrt{2}}{\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{1}{\sqrt{-2+2\,\sqrt{2}}} \left ( 2\,\sqrt{1+\cot \left ( x \right ) }+\sqrt{2+2\,\sqrt{2}} \right ) } \right ) }+2\,{\frac{1}{\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{2\,\sqrt{1+\cot \left ( x \right ) }+\sqrt{2+2\,\sqrt{2}}}{\sqrt{-2+2\,\sqrt{2}}}} \right ) }+{\frac{\sqrt{2+2\,\sqrt{2}}\sqrt{2}}{4}\ln \left ( 1+\cot \left ( x \right ) +\sqrt{2}-\sqrt{1+\cot \left ( x \right ) }\sqrt{2+2\,\sqrt{2}} \right ) }-{\frac{\sqrt{2}}{\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{1}{\sqrt{-2+2\,\sqrt{2}}} \left ( 2\,\sqrt{1+\cot \left ( x \right ) }-\sqrt{2+2\,\sqrt{2}} \right ) } \right ) }+2\,{\frac{1}{\sqrt{-2+2\,\sqrt{2}}}\arctan \left ({\frac{2\,\sqrt{1+\cot \left ( x \right ) }-\sqrt{2+2\,\sqrt{2}}}{\sqrt{-2+2\,\sqrt{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(x)^2*(1+cot(x))^(3/2),x)

[Out]

-2/5*(1+cot(x))^(5/2)+2*(1+cot(x))^(1/2)-1/4*(2+2*2^(1/2))^(1/2)*2^(1/2)*ln(1+cot(x)+2^(1/2)+(1+cot(x))^(1/2)*
(2+2*2^(1/2))^(1/2))-1/(-2+2*2^(1/2))^(1/2)*arctan((2*(1+cot(x))^(1/2)+(2+2*2^(1/2))^(1/2))/(-2+2*2^(1/2))^(1/
2))*2^(1/2)+2/(-2+2*2^(1/2))^(1/2)*arctan((2*(1+cot(x))^(1/2)+(2+2*2^(1/2))^(1/2))/(-2+2*2^(1/2))^(1/2))+1/4*(
2+2*2^(1/2))^(1/2)*2^(1/2)*ln(1+cot(x)+2^(1/2)-(1+cot(x))^(1/2)*(2+2*2^(1/2))^(1/2))-1/(-2+2*2^(1/2))^(1/2)*ar
ctan((2*(1+cot(x))^(1/2)-(2+2*2^(1/2))^(1/2))/(-2+2*2^(1/2))^(1/2))*2^(1/2)+2/(-2+2*2^(1/2))^(1/2)*arctan((2*(
1+cot(x))^(1/2)-(2+2*2^(1/2))^(1/2))/(-2+2*2^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\cot{\left (x \right )} + 1\right )^{\frac{3}{2}} \cot ^{2}{\left (x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)**2*(1+cot(x))**(3/2),x)

[Out]

Integral((cot(x) + 1)**(3/2)*cot(x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\cot \left (x\right ) + 1\right )}^{\frac{3}{2}} \cot \left (x\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="giac")

[Out]

integrate((cot(x) + 1)^(3/2)*cot(x)^2, x)